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ABSTRACT 

We show that for the fermions in the T = 312 

representation, the Sathiapalan-Tomaras generalisation of 

their result for fermions in the T = 1 representation, 

cannot be obtained from the conservation laws of the full 

m(2) theory. We explicitly construct the effective 

Lagrangian for this case, including the J = 0 and J = 1 

gauge field fluctuations, and show that the equations of 

motion couple J = 0 and J = 1 fermions. But the Green's 

function involving couplings between the J = 0 and J = 1 

fermions is suppressed. 

PACS numbers: 12.10, 14.80, 11.30, 11.10 

Operated by Universities Research Association Inc. under contract with the United States Deparlment of Energy 



-2- FERMILAB-Pub-83/104-THY 

I. INTRODUCTION 

The subject of monopole catalysis of hacyon decay [1,21 

has been of great interest 1~1 i::lr i>a.+t year. There have 

been several studies [3,41 of fermions in t11 e isospinor 

representation of SU(2) interacting with the monopoLe, 

because this is the case of interest in the SiJ(5! GTJT [5! . 

Rut, it is also of interest to stuCl3y fermions in higher 

representations intecacting with the monopole, which coil 1;1 

be applicable in other GUTs.Suoh rln analysis has been done 

for the T=l case by Sathiapalan and Tomards I6I. They have 

also argued that the i r results can be generalised to 

arbitrary representations T. 

Another development in the study of the phenomenon oE 

monopole catalysis has been made by Sen 141. For the T=1/2 

case he showed that the Rubakov-Callan effw:t pi_ .5 a 

c?onsequence of the conservation laws of the full theory. 

Hence, though the boundary conditions at the monopole core 

were initially derived by solving the one-particle Dirac 

equation, they have a rigorous field theore ti.:: 

justification, because the conserv,ation laws of the full 

SU(2) theory lead uniquely to these boundary condit;.ons. 

-cl1 th i.3 paper, we try to rederive the 

Sathiapalan-Tomaras results us ping t:1 c conservation laws 

approach. For T = 1 fermions, we find that the cnnsrc\lation 

laws of the full SU(2) theory, along with the kinematic 

constraints do lead us to unique final states, in ag r:jr?:nr?? t 
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with their results. But for T=3/2 fermions, the 

conservation laws allow certain nrocesses, which are 

for!3 i:l:len !JY the Sathiapalan-Tomaras anal.ysis.This means 

that the e~ffective Lagrangian obtained by solving the 

one-pa,rticle Dirac equation has !nore conservation laws than 

the ori~ginal theory. Hence, their boundary cord itions no 

longer have a field theoretic: jastification, and hence, 

merit a more careful analysis. 

In section II, we use the conservation laws of Sen, 

along with the kinematic constraints that oar, be (derived for 

the T=l and T=3/2 cases, to predict final states, given t11 c 

initial states. We show that for T=3/2 fermio~w, we do not 

have enough conditions to predict a unique final b i:4 i:t+ i-c,:. 

<$\I<? c,yy initial state. In section ITT, we construct the 

effective Lagrangian for the T=3/2 fermions interacting with 

the monopole, allowing for both J=O and .J=l gauge field 

excitations. in section IV, we show that in the absence r, E 

.J=l gauge field excitations, the rffeotive Lagrangian 

satisfies more conservation laws than the fuli RTJ(2) theor?. 

In the presence of these excitations however, the extra 

conservation laws are violated. But using the effective 

Lagrangian, we argue that the Sathiapalan-Tomaras forbidden 

processes are suppressed. In appendix A, we give some 

details of the derivation of t:he effective Lagrangian for 

the fermions interacting with the classical monopole field. 

In appendix B, we explain how the boundary condi.t;ons ,-1rt+ 

~derived in the absence of gauge Eield Eluctuations. 
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II. CONSERVATION LAWS 

In this section, we start with an W(2) Lagrangian 

spontaneollsly bro'iea1 to a U(1) by a triplet of Higgs. we 

also have massless fermions in an acbi.%c*ay representation 

of SIJ(2). The Lagrangian for such a system iti 

,i -c_ -i 7-r Fpti Fpv -+ L g II--;‘ @ G-” 

.+@,d$)+(o”q -WDl a.1 

vthe <i? $ is .'i Dirac spinor, and n is the number 0 f Eermion 

families. We shall now analyse the system to find processes 

that ace allowed by the conservation laws. in the presence of 

the t'Hooft-Polyakov monopole 
/qiLC = 

where I"(r) vanishes n t the origin, and tends to 1. 

exponentirll_iy ouk.ide the monopole core. 

The conservation laws satisfied by - t;> i + sys twn have 

been analysed by Sen(4), and for the two-family case, he 

obtained the Eollowing conserved charges 

-5-i a*3 

SS = pL b’* (L”, I- pR Y3 I&:< 

53 = GL -&I” & - pR .)/Ok& 

a.4 
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GL Y 
cJ $.;i 41 

2 

St; z + L+-;2 d” ~?. ~7 4a 

-i- 4; y* -j. f l.& + lI& d” 2.7 Lp; 

Sl and S2 count the total number of partic:lrs r>f t"es 1 and 

2, s3 measures tine differences in helicities of particles o? 

types 1 and 2, and S4 measures the tot.31 U(l) charge carried 

by the fermioils. PO c the isospinor case ( $ = ( xl/,, 

X-l/2)), he also showed that we obtain ?I>NIC !oore constraints 

by restricting the fec!n.ions to be in the J=O partial wave so 

that S-S = -r*eT. These eight corxtc?ints ai:r s:lfficient to 

uniquely specify the final state for any initial state 

canfig0ration. Hence, in this approach the conservation 

laws of the or.ig,inal SiJ(2) Lagrangian along with the 

kinematic helicity constraints uniquely lead us to baryon 

number violating processes. 

What happens when we consider fer:nions in higher 

representations OF SiJ(2) ? The conservation laws ace still 

the same, but the kinematic constraints are now different-To 

see what the constraints are, let us reduce the relevant 

part of the Lagrangian (=i$$ $ ) in terms of two- component 

f ieids &‘E r; i ) I UK = h? c ) a.7 L Xn 
Since for massless fields, the right an1 left hae:ded fields 

decouple, we may write [61 
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R = xp+ iJo -+fl, - & L-L - I2.A pa+,; L x/? I >I . .24 
+ YLT 1 ;dca -rRo -t l-,D.A --6.h 13 

W?bsre D, = D &+A. 

Dn, = i A~ cr; pig -^,\, 

21 +;4)] XL 
-a,8 

- 6; &,+ Ta$j 

i 2 *CT a.9 

/A = 6-i Cz;'tij 'T-* ~j a .10 

We can easily verify that D, translates into an angular: 

Innmentum barrier of the f:rm {J2+l/4-(^r . G,2)1/2 . This 

specifies the possible .J value for each C-T value. 

(A) Fermions in the T=l Representation. 

'Xl 

4,= x0 

t J 

‘X.12. 

X-l 

The s;ubscript on X labels its c*G value. It. i-s cleat that 

only the J=1/2 partial wave oE Xl and Xwl can enter the 

monopole cmce , w'herea.3 X0 iS prevented from entering the 
2 

monopole core for any value of ;r. Since F-J = E-T + T-S, we 

have XlR and XmlL as incoming fermions and XIL an1 X-;R as 

nutg~oing fermions. X0 decouples from the problem, and 

effectively (X1,X-l) acts as a doublet. So here again the 

conservation laws along with the p!?ysical angular momentum 

constraints yield the right number of condition.5 to lead to 

a unique final state for every initial state. For 

excample,we have 

--, ,x,," + x:,2 
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uniquely. 

(B) Fermions in the T=3/2 Representation 

x3/2 

l-t-= x ‘/x 

l j 
X-Y= 
x -3/, 

As before, the subscript on X labels its 2.5 value. The 

angular momentum barrier term allows only the J=l partial 

wave for the ^r-?=:=+3/2 fermions and the J=O partial wave for 

the ?.T=+_1/2 fermions to enter the monopole core. ;. ;; = r"" g 

+ nr.2 further tells us that X X X X 
3/2R' 1/2R' -1/2L' and -3/2L 

are incoming fermions and X X X 
-1/2R and 

X 
3/2L' 1/2L' -3/2R 

are outgoing fermions. But now the constraints that we have 

are not sufficient to uniquely specify a final state for 

every initial state.For example, 

1 
xq,F? + ‘X :3p- -9 

x3; I 
I.- + x4g2 k 2. I+ 

-9 ‘X ;L + 2, I2 2.15 

Both final states are allowed by the conservation laws and 

the kinematic constraints,though 2.15 is not allowed by the 

Sathiapalan-Tomaras extension of their result for T=l. In 

their case, fX X 
-312) and (xl,2r 

X 
3/2 ' -l/2) act as decoupled 

doublets, and 2.14 is the only final state. As explained in 

the introduction, this discrepancy warrants a more careful 

investigation of the problem. 
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III. EFFECTIVE LAGRANGIAN FOR ISOSPIN 3/2 FERMIONS 

In this section, we shall reduce the fermion and gauge 

terms in the Lagrangian 

& = -A Ty F,9FU" + $2 piw 
.3 

+ (adp)'w9) - V(4) 3.1 

to a more tractable form in terms of the dynamical variables 

of the problem. 

(A) Fermion-A cl Interaction 

Since we are dealing with massless fields, the left and 

right handed components decouple, and hence, for 

convenience, we shall derive the effective Lagrangian in 

terms of the right handed fields. 

J z x, (& +-610 .-;e: (3” +i) .-;;) .-lb $c 

We expand the fermion fields in J=O and J=l partial waves 

using the basis in which J2,J3, 2-g and I?'? are diagonal 

J-z 0 
XR (;;',ti) = L:,,-:, (O,@) q&e (7,k) 

-I- L--Y,.Y,( c):, (0 ) iTgo, t? c-f, t;) 3.3 

xl?= ($,,.) = PI& (8,cp) z4:-y2 (Ye) 

I- 
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+ r\y;v, (0, (3) i7y;yL CT/b) t 
rl..;&, (O,cp) c-;;,, Ir,t) 

A- J”*g& (O/G:) u”;,-!, (I-, t) ,+ 

M-?&L(e,~>) i$yL Cr, “) 
3-4 

%/2,-l/2 and L-1./2,1./2 represent .J=O tensors with 

eigenvalues L;*+ ;-G , . . Since J=O ::* J3 = 0, we do not 
indicate it. "lr;2,-1/2r M-?/2,1/2' "l_r;1/2,-1.12' "1&l/2' 

M371,-1/2' ana CG,2,1/2 are J=l tensors with eigen Val:leS 

%I;' ~2 A - e T,K"S' The explicit tensor str~11::tures have been given in 

Appendix A.Tiie same eigenvalue notation has heen trscd for 

the ;" variables. 

The aetai1a of i-.:1,2 tderivation of the effective 

Lagrangian from 3.1 usinq explicit ten~+,r rtr~rctuces have 

been outlined in Appendix A. Here, we S,ha!.l only me II tion 

the following points. We work in the A3 = 3 gauge. We make 

exp1i.ci.t a l/r dependence of the U variables (i.e. IJ .= 
rl 
iJ/r! , s 3 that we may replace ( ax + l/c ) by &,TL. The 

results after angular integratic>n rare given below. 

L,i:. $L= j Lj,tq~L $2 

= I 
‘- i .n L- 

u &K [ ( i.2 0 .t r. AL) u;, -y&s: - ig (i -Fe)) L$-q 

t d3pY&Kf I ;Jo .-;aq L&,yAR- J&-FW) u&//g 

-I- u;y!/$t’ ( Iho .-La,\) GXR - 7;. J-3 (I - F(d) i&y? 
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* .J$l ~ u;-/Jj 

rm 
+ LI -);;y&K 

c 
l ~2, f I ah) u-;,~~~ - JZ i I .- FCr?j u-;~,,, 

n 
+ JT v-Y&. -- 

,7x !r 

.+ ui,.Laf ( ;a0 *; 2,) ~2, -x,K .- +; L I .- F(d) u~;,~~~ 
+ d$' v,;yxtz $- 

+m -I- L)~.)i:,,&R I(‘ LdO - 1 ah) U.&p c ~9 ( I - I='(*)) GY2 
-k 4-g u&q 

+ Ll,Tgf ( ia0 -;>*) U..i,G&, + 2 (I-Fr*j &yL<,’ tli ;3.i- 
As we had expected, in the absence of gauge field 

fluctuations there is no term in the i,agr.AllcJ,iao coupling the 

J=O and J=l fermions.The boundary conditions at the monopole 

core that the fermion fields have to satisfy, have been 

derived in Appendix B, and in the limit ro+O,We get 

U3?~,-yL~ i- U-:A,yLa --+ 0 3.6 

U&Y ya,Q -9 0 3 ‘7 

IL;, ,-y&R --, 0 3.63 

u 2, -j,$‘Lp -> 0 3.9 
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J-; 0 
L-4 2 , -YLR t d&R --F- 0 

The boundary conditions imply that ( ir 
3/2,-1,/2R,“-3/2,1/2f~ ) 

and "l/2,-1/2R'rJ-',,/2,1/2fi ) act as decoupled ;loi~hLc,ttn,~~uilil~~ 

the other four components ~lrcmlplct Fco,n the problem. 

mact1y as i,n the Rubakov-Callan case, we !"cay ""lmp'lt' 

r;reen's functions involving the two decoupled doublets and 

We? get hen-zero Green's functions 0 n l yy Ear t:1 e 

Sathiapalan-Tomaras a.ll.ored pcoce.+.jes. 

(B) Classical and Fluctuating Gauge Interactions 
In the Rubakov-Callan case, only the ,J=O fluctuati0ns 

were included, since for the isospinor case, only the J=O 

partial wawe of the fernions could enter the monopole core. 

But here, both J=O and ;I=1 part.ial waves are allowed near 

the monopole core, and so , we have no r~ti0n~l.r for 

ignoring the J=l fluctuations.In fat t , if there exist 

non-zero couplings between the J=O and J=l sectors, we 

expect it to occur throug'h suclr excitations.We may expand 

cc 
Ah = ALa ,-t- ( J- 5 0 +&&-Icns ) 

-+ ( -Jz 1, puctu~~i~oAs,) a.ia 
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BY using the explicit tensor structures 0E the fiuct0ating 

fields and computing their mass and kinetic energy terms, we 

may try t,o look for the relevant fluctuations, which are not 

suppressed in the effe.. -tive action.But a simpler way iS to 

use Callan's trick to find out those excitations that are 

massless and have no contribution from the ??.,a UP -ija 
11 terrln. 

We use 

‘=. U* R; u;’ + c. iJ, a; 0; 3ai3 

I.A(J,C:, 3 7 
where UA = 6% and A; = ~;CL % . 

When X does not have any time dependence, this is merely a 

gauge transformation and hence costs no energy.But the time 

dependence of X leads to a nonzero P 0 i. 0E tile E0cln 

i=oi Z~ &fl/ 
h($,ti+.T ,_;,k(i;:c) F-7 

= .g (5, .-,-;Tj) (I-F(r)) e' '7. e 
J TL 

+ (3 ; .i ) ‘r ‘--- .+ i3.14 

(As mentioned earlier, we are working in the A0 = 0 gauge.) 

TO seperate excitations into J=O and J=l. parts, we make a 

partial wave expansion of x(r,t) keeping only terms upto 

L=l. 

A(u"+) :~ A00 [ T, t-.1 ~+ Xtm (7, k) ?m 

3.15- 
We ,use this in 3.14 to compute 
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Hence, the term in the effective action is (tiEtf$:: anyula r 

inteqration ) 

iyy = J 49 f$$ = Lot-L + L .hOY 
d 

,L I a -t .i &n -r & X/“-r /nz + 
6 .A” 

: LACC + LAO0 -f L,Alrn 3. 1.7 
(C) Fermion-Fluctuation Interaction 

We are interesTted in the effective Lagrangian f-on the 

term G P+, @. Let us make a change of variables to get it 

in a simpler form 

$4 $' = e 
LX(+yJ) ;i. 7 

+ 3 ,I8 

As explained in the previous sub-sectio:~, t%i:, is almost a 

gauge transformation. But the time dependence OE x 

irltr~xluce;; the following terms in the effective interaction 

(after angular integration.) 

.* 
= Aoo -- 

* i 
1. ug$ IJ ‘ky@ - 1 

d 
v :$..q 0 y&. 

9LL d ea 
‘ n-l ,+Ol .srl 

-t .! u t+m 
d &J&K U%.Q -$U -I/h,*&& u-;L,,y2Q. 

.+ 3_ Ulfq <3 ;“/,, n u i,Z,-@ ‘- ,-YA 2 S&k u:;, %“i 
--I 

*1 “,~+crGG (J I Y,w 

b/-Y, fi J v 
d 4, -Y2fl - <Z :i;;TR (I;;;;;& 

J 
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. - ,4- .x,il 
I~ I 77 zL L u I& u;:y;c - <; L):;&JI&;] d 

-t- kc 3 
= L,f;+m A- L&- XJrrr 3 I? 

where the separation in to L&,! x0 0 .3nd i -I - AJrn t 

tzhai: tt?tYhls Yrl 

is 

obvious. The point to note is Lfk-\iq 

couple J=O fermions to J=l Eermions.The prime on the fermj~orl 

f ie1:l.s in:1 icate that they are the transfocwd fields. The 

full effective L3gr1q i.an can now be written in terms DE the 

tcannsforeed fields.Incorporating the left and right handed 

fields, the full eEEective action is 

+ L-ho* + if *’ -ho0 f Lf;-xi,v 

-I- lx,, + Lfn'-,\,m t L& -A,m 
a- ,20 

We shall henceforth drop the primes on the fermi.orrl i?ie!.:l+. 
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IV. DISCUSSION AND CONCl~lJSfON 

~Cn this section, we shall look at the conservation laws 

of the eEfective Lagrangian and see how they are affected by 

the J = 1 gauge fie3.d fluctuations. We shall see that J = 1 

excitations d 0 couple J = 0 fermions to \J = 1 fermions, 

although processes iFlVOl~\7 i ng s il:;h couplings may be 

suppressed. 

As in section II, our theory contains tw<, 7 = 3/2 

Ee cmion representations interacting with the monopole. In 

the a:1.5ence 0: x lm terms, the effective Lagcangian for the 

system is 

Ltlff z L,3cL + g L,; - /J’.L + c: L&+ 
-+ Lhos -+ g c&1 -~.A00 + 2 L&’ -AGO ; =I 

This Lagrangian is symmetric under the 
4.1 

followi.r~g 

e LBLi 4-L 

i DL~R e 4; 

e IeLi XL’ 

e .’ 4;a 
X;a 

where JIi denotes the 

t::.l,liE,-,c,nations, 

4-,; .-, 4-1' = 

I / 
4-P-l 

‘ 
-3 1YR =~ 

'XL1 .---, 'XL; ' z 

xni 
---P 

x.Ri "' - 

4, 3 

4 ~4. 

, v ;.‘-yL, 0 n cl and x1 denotes the 
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set (uzz (J,~~~~ ). Since one of the charges associated 

with the ahove ~1~~twiw tr ies is anomalous, along wi%h the L:xal 

U (1) charge, we have the ~foL10w~ng eight conserved charges 

s, 
zrSo (J 

z JJ, ( &+;Y$; + ~Xj++) 

d”, 6 

;I 

;i, 
z. t-l-r (< +a 4-R‘ ,-t- QLL T @i;) 

4. . ‘& 

s;, 
JZCJ : J& ( &' y _ %I+ ,yL' 

xi 
- x a Xa 2 -j- 'XL a+x3 

.+,tz 

cy, J = 1 ; Jdr ( L&++& - $-,“’ it.,’ 

- f? p+ kRX f +LY ct-,‘) 
/q . ij 

__ ” 
a.3 = s J,. ( &,‘+ &’ ,- i$; ’ d -f 

h7-d- - 4-p * kLa) - I I ( xa’+X~’ 

- xc’ +x‘I + Xp+ XRL - x2” XL&) 

4 -IO 
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S‘/. = ,j- ,,- 
c7 J “i s i 2 ( u :/2:-;2 v.;,:‘-& - 

u ‘g & u .;;, I/ > L , ml -l- 1 cl i v +!(y/:,, LI YJ, VI, - ii .;,:& v.& > 
-i- .& ( u i;; “;,tL -- u :,::i I,;!&) 

- L’-g ‘ u;,;,: 2 
9 

Conservation of these charges lea11 t;> H (I:, iqile final 

state for any given initial state and is sufficient to cule 

out proce.5.5 2.15. Rut we know that the original W(2) 

theory had only four c0n.w rvai: ion Lws. In fact, the 

correspondence between the original come rvel .~'lcl:r%i.i.t~.$ 

:defined in equations 2.3 throli~Jh 2.6 is 
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iit z .s G + $.,.3-s 1 Z 5, 4 .(a 
,& J-r 0 2 + $-lg=’ _ CL. .I. I’3 

5.3 J-r O 
Jr, ~-i- 53 Z 5.3 l+- , J. 

s4. = 5.f 4{. I 5 

Since the extra conservation 1~~5 :1o n,>t come from the 

El111 theocy,they need not be stable under further: ywg~ 

Eield fluctuations. In fact, if we introduce Xlm terms, we 

can no lorqe~ ~oake independent transiTor.-aationa on the J = 0 

and J = 1 fermions - i.e., we are restricted to 

transformations with Etil.. 5 $2, and @iN .= &A in 

equations 4.2 throqh .4.5. Hewe the full effective 

Lagrangian, equation 3.20, conserves only the c:harges S 1 

through S4 and should allow processes 0E the form 2.15. 

Unfortunately, the conservation laws IlO ilO t y pi ve any 

inEormation about the amplitudes 0 f the various allowed 

processes. T.0 see whether any given process is s:lppressed 

or enhanced, we have to c amp u t e its Green's function 

explicitly. PO c the process 2.1.5, we are not ,able to 

calculate the Green's function exar:I:ly, but let us see how 

far we can go with the information that we 11o have. 
. 

The equations of motion with Xl!" = 0 are (in terms of 

the variables A,S,?,... defirled in Appendix A.) 

-377 A zi3, 4.16 

- an!3 .+ jzi ( , -FC*)) 0 .- bit; p z o 4. 1’7 
71 

c*L > -. UT ; j-J + 2 (’ , ,-+) E - L” Gl ii = 0 
yT .TL .+/it 
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a71 I-i ,- 52. (l--F,8-j) I-1 _ ;.A*,, & =d 4,. I? 
3 

a.* a -t u’. i,-f+)) c, -71 0 dt, 3 0 
.h 

- dhL Y J?i ( i- f(f)) 13 -- @ L I< .-= (J 4. (CL I - /a 7l 
a A K -‘.- .n I c - 2 (, -/=+ )< - ; Air, C? zr- (-J 

-x 
-,. a‘% 

3n CT .+ 5 ( I -F(r)) c, - ; x,;n K = 0 -+a3 

TO affect t11 e boundary conditions near the origin, it is 
P 

clear that Arm should have a l/c dependence - i.e. 'lm = 
n 

a/r x r m. We could use this as ,a2 ansatz and derive the 

boundary conditions at the origin.%quati:xls 4.7 through 4.10 

form one set and equations 4.11 through 4.14 form another 

set, and in general, it is clear that we shall get boundary 

conditions coupling J=O fermions to J=l fermiona. But when 

we use this ansatz in the effective action 

&ff = s i rZBT dk 4 a -1 
we get terms of the ~form 

cd 
cl3 1 JJ 

I a”c,,-dtz cl ;* ;+ J I- c/k 
1-t no 

4 ,a5 

Xence the effective action blows 11p as l,!ro, causing a 

suppression, unless the excitation lasts only for a time of 

order 7lo I in which case, it is unlikeJ.>y I::-! ;a k i-.h'3it? 

aomentary boundary conditions laad to any new processes. if? 
0 

VW take any softer dependence of Xlm on : (e.g., Aim .= alnr 
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leads to a finite action!, the boundary conditions at the 

origin are not affected, and we get hack t'he .srlt:,i+ rloundary 

conditions that we derived in Appendix 8. Hence, we 

'conclude t-hat the process 

X 3j2 t x-q; -> x YA -+ x-Y& 

is suppressed. 

We should emphasize the assumptions that go into 

deriving the above result. We have assumed that a momentary 

boundary condition co~pli~lg the ,I=0 fermions to J=l fermions 

cannot yield any new process. Fl:i5 i y 4 :>l.a:is ible 

assumption, 'but we cannot prove it. We have also consizlere.3 

only massless modes of excitation. This again seems 

reasonable, since we wo;lld expect massive excitations ix7 

:1arre a Cl Yc. suppression, hut it has not been rigorously 

proved. 

Hence, our conclusion, with the caveats mentione.1 above 

is that the process 

7’ .3/r t x-3/l -1 &A + x-pL 
is suppreased,even though there is no conservation law in 

the full SU(2) theory to prevent such a process. 

I would like to thank Ashoke sen for tna ny valuable 

discussions and for a critical reading of the manus-rig%. 
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APP%NDIX A 

Here, we would like to outline the steps leading to the 

efEecti.ve Lagrangian for the fermionic sector. As we had 

mentioned in Section 71, we work in the J, J 3 = m, *"$, ;* -2 

diagonal basis. 

x,?“‘” :- ? 
L VT, -yl. u ;.T;;< of L ‘y&Y, L‘ :;:: “,t< 8 ~1 

.J.: I 
A 62 = M ;/z -,b& 0 ,y, -,vA +I -t M - Gz d/i, () .~,u,~R 

l--l 2, YA 
rr) 

+ l&J? + PI-g-r, ULR 

,+, 
+ M ;;, U&YrK .+ '~;1-3/.&y2. &,Y,R 

Rh 

Let me define the following linearly independent tensors 

r:p = j;*fC-)Lj LR0( +p'?k)jk Cici 

+ &Fe);, G',, A3 

3 .2 
r iJ’ k ti = (G-Fe); (9 -&)kti ,. p.i:‘c),n($ ‘Fe jiA 

+ (4?‘$6,J;k ($.fe)jx 03 
~ 

ktin,nL = cRo(. (q”):/ (i$),,n f 3 L 

&ii;, jT;@!jk (.Zy&)il,f~~ t C id ~~e);~(i;,c)~~,~~ 

64 4 
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= 
-t (?, re ) ;c. (kf+),; k &-@-)/I+ 

-t- G fc- );a k-p+? @&,LIL 

Ad 

t$?jR*Cl,A, = p I’& (T)3dpd~(~e)n,Al. 

+ (C'r(-)jR (@C?];M (Tpk)n,n2 

q’ljR4n,nL - (9. $ & ).& ‘&xbc ‘?a, &,i-) -J (& k h/L 
-f- (kc& &bc ‘k’, k,+?(&+h- 

+ (G ?I? )jR CclbC -r”, (rbl?)Lk (~~.)fl,~A 

AB 

c5ppn,n, = L,kd (S-.?C~ )Lj (+- re )m 

+ 6 LCx (b’Z~)jR ~?TL- )/),OL 

.+ cjti (%‘&)(k (? ?L-)A,A& fiq 

Q ?&, kafl,n, = (;.rQ&r+j (7 Tc+JlL 

3 (4 w$L. (,;-rt.);j (;.rY; )m, 

+ (“v.TG- )j& (he );I2 (+.m+,nL 

A II2 
Here i,j,k = 1,2 are isospin indices, a = I,% is a spin 

in:lex. "1 and n2 are indices which always appear 

symmetrically and it cain 1~ identified with the J3 index as 

A z -y’ A iI 
A -I Z Id Al 

; 0 R 1.3 -d, IL 



-23- FERMILAB-Pub-83/L04-THY 

Next, we look at the linear com'oinations of these 
2 tensors that are eigen functions of r'*T and r',$ and hence 

identiEy 

iyd, -% = (13 ' t P ") / 4 g a I4 

l--y2/1/* = ( p' -- ? ") / &. VT fq I5 

PI ;,-y2. = ( gj"+QJ) / d,LG? A I& 

MY2A = 
p 17 

rl,r),,-, = ( 13’ t acj2_q3 ~-~.Q”-c;i~-&! -_ __~__. ~--,..~-- 
Id 62 AIS 

fl%& % r [ iy - ;;1 q* j q” - i. tp -E&g 

,C?JT Al4 

qy2 = ( -ii+’ + ig3+g+ t&--r&y) .._..., ~_..~.. ,.,. l-.l_.--_- ,..,._ --... ~. ._ 
-1116’ fiao 

M -;~-YA = (s ‘ 

~0’ t +J3- @ii,- ;(p;Q") 
._..___ L I_., .._.,_ ~.-.e-.-----., .~_~~ .~ ~~~~~~ ., ..~ 

4J-z Ad' 

The normalisation factor CO~nlr?S E rom requiring 

and similarly for t'le rest. 

To calculate the effective Cagrangian, we need the 

effect oE an and L? on these ,tensors. 
0 

(DQ and A have been 
0 

deEined in equations 2.9 and 2.10 ). The reSUl%S are the 

following 

Lb, 1 Vd,, -k = G aaa 

2.no L)bl, ya = c p a3 

iIn, %a.-% = s-- 6-i-’ M,,,,, A a-t 
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b-b M -h,i/> = ‘- i-z- PI -% , -& A as 

DA0 ‘vi’I.qL = - J-2 Mx,-yA Na6 

,>il;: M -%,-yL : -m PI-)l,.-y, Ad? 

Dib %i~,-~L. = 0 l%dS 

IL, PI -3/L, y> =o A 2.9 

This agrees with cur expectation that U 
3/2-1/2R* , “-3/21,/2P 

UL,2-1,2kand VW,/,,/,, do not have an angular momentum 

harrier. To get the effective Lagrangian inside the 

monopole core, we also neeC7 the eEEect of the A term. 

n t- ‘/J ,, -& = - ai ( I- t-(d) L-l/,, y2 1’1 32 

L\ L-&,y2, = d: (,-,~j L~;,-~& A 31 

.L.l IYI Y&-PA = -4; I i- I=(Y)) P+~~A A ~a 

b 'VI-A,, = IsI;\ (,- ,':(I)) M&Y,2 A 3 3 

fi yb<YL 2 m (r- m) Mq,,-.!, A34 

/A M-h,-ya = Jjl j/-,‘(d) /“1-~3/&& A 3i- 

D rl +&%a = xc? (,- bwj PL~,,~ A i3L 

L!l PI -3h, % - 
@ [ I - Fiu.g W&,-V2 A 3 ‘7 

Putting all these terms together, we get the effecti;re 

Cagrangian 3.5 in section III. 
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APPENDIX B 

In this appendix, we sh a 11. derive the boundary 

conditions that the fermions in the T = 3/2 representation 

have to satisfy in the presence oE the classical monopole 

field,in the limi% t:1a t the core radius is vanishingly 

small. 

The equations of motion rlr? ohi:rli.:J~~l fc-r,ln the effective 

Lagrangian 

v,ariables 

n 

8 

c 

0 

6 

K 

67 

i-1 

Since we 

3.5 and for convenience, we shall 

u;,.-r,n - 
u Z&&K -I- 
l&5@ - 
u;,+Y$ + 

n 
u %TYLK - 

L$kR. I- 

m 
u-%, YL R 

II -2, &R. 

c',.&P? 

r? 
u-~hiyLt? 

u-;/ !/AR 

LG Yz A 

, ?J:~ 0 5: 0 
u&;-y&R - “-j$yj,” 

u;,-; A -+ u;;,y2 p 

11sr’ t11 e 

61 

AL 

A 3 

l?? 

are interester in the behaviour of the solutions 

near the monopole - i.e. when r << E-l, - we may set a0 u 

= Eu 20. In this region, the equations oE motion are 

hnrl -42 (I-FpJ)O := (-j 

a iL I3 t & (l-Fcqc - (3 
x Alo 



-26- FERMILAB-Pub-83/104-T9Y 

--JnL+C& Cr--FLrj)i3 - .\i& k - o @I( ,n 71. 

-- an 0 ~+ ST ( I - ,c=crj) fl - ~‘22 e. :-- 0 Q,~ 
* ,A 

c3.h c - \I’?‘; D - & (,.-~(<))g =~ i-2 ,B l?J 
-x- n 

-a. i: -f- & (,-i--CT)) K - (3 fit4 
3n k 

n n 

arlLc-- & ~ P- 
Fed) C% = c3 

I3 I5 

Equations R15 ana B16 describe the motion of the ;I = 0 

cwponcniz and for finiteness of the solution xt c = 0, we 

have to set 

1-l ire> --. 0 i3 l-i- 

This is exactly analogous to the T = l/Z case. 

For the .J = 1 components, some unscrambl;ng of the 

equations has to be done.Equationa 37, Bl2 and Bl3 form one 

set, and l310, Bll and B14 form another set. We shall derive 

the boundary conditions under the following approxi!nati~,n 

F(r) = 0, r<ro 

3 Ijig 

F(r) = 1, r>ro 
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but as we shall show later, the boundary conditions 73 Fe 

Jalid for arbitrary F(r). 

Let us solve the system of equations Bg, RT2 and 31.3 

outside the monopole core. A decouples from D and E and 

equation I33 hai the solution 

A = constant, r. < r << Ed1 L-3 i 4 

812 and 813 are coupled equations izh.3 t can be solved 

yielding 

i) c 4 ( x JT + d L ( T(j j- , I 
i-. r* (y<:it 

~ !Ji 
‘3 2 0 

E . . i d, -rbC2 - iLda. (~o)J-L, y. < -’ ‘T<( c 
,n v'i7 

H -ni 

where d 1 and d2 are constants indepenAe?t of r awl ro. The 

factors of r o in the numerator come Ecom the requirement of 2 -I 
square integrability of the solutions - i.e. 
y' 1 i,ylr 

s IDiZdr t 
~** 

= finite. These solutions imply the condition 
r-0 

iD + E = 0, r = r. l3;la 

Let us now consider the equations inside the monopole 

core.Eliminating A and E Eram the set of equations, we get 

the following third order differential equati~,n for 3. 

,ypyq) 4- 91J2R - 624 + Q ;a 

with the solution 

D - d I n .+ &y,’ -+ c\ 
- 1 

6 iL-- 

2~ i 
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The condition oE square integrability ( [*IiIj2dr = finite 
0 

) eliminates the solution I/Y&, so that we are Ie,ft with 

III=’ dl 4 rdz+-13 , y < Y 0 R ci 3- 

From this,we also obtain 

I_ 
IL = ~4Ticj,?l +- IL?; da%3 ,, I< I’0 Aa 

This gives 1u.s the relation that 

a;o,+JzA-1 E=o , r=~ca 
43 

EjcAS 

We carry out the same manipulations for the t3i:hec SI? t 

0 E equations BlO,Bll and B1.4. From the solutions for r > 

rO* by we ,get 

iC + K = 0, r = r. f3 2 4 

For r < ro, by eliminating ?! arl,.I K, we get 

A 
2 a”C t +Jy -a ;3c. - t;c. zz Cl A30 

-z- 

Which has the solution 

c. -.- k/AL i- & + IQ? , ~YC~~U a.3 I 
9l *3 

ilere the condition of square integr-dhi.li.ky leaves us with 

c -= k In 1 , .r- c-t-0 I? 3 2 
The solutions for R and K are 

0 = &&k,d , rclo A.33 

P(r i&l AZ , iTi 
am 

Is;34 
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These solutions lead to the following relations at r = r8 

-VT ; c -I- !3 =O -8 5 60 a35- , 

- L, c .+ K I- ” 7 ; y-0 6 36 

i33 

NOW, we have conditions at r = ro, obtained Er m1n 

solutions for r > r. and r < ro, which have to Nnatch 

smoothly. For the set 4,Tl and R, equations B22 and B28 C?I1 

he satisfied with non-zero values of A,D ant1 R at r = '8. 

But for the set B,C and K, equations 829, B35 and B36 have 

the solutions 

C(r,) = 0 0 3 7~ 

K(ro) = 0 

B(ro) = o I3 Wf 

Let us look at the effect of D and R Ear c i> (8. the second 

term in equations R2i-l and B21 is negligible for this 

region.Zence,effectively, we may set d2 = 0, when we are 

considering its effect Eoc c >> r 0' In the limit, r. 0, 

the first tern is negligible in both the solutions. 

.%,effectively, we may set 

D(ro) = 0 el+,o 

E(rO) = 0 6341 

But, even though A,D and E are related at r = ro, these 

effective boundary conkditions cannot be useil to se,t any 

boundary condition on A. Thc1s, we get the effective 
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boundary conditions that ute mentioned in section 11. rilollg'Q 

the boundary conditions have been derived using the step 

function ap,orou.i!nation for F(r) r they are valid for 

arbitrary F(r).Since F(0) = 0,the diEEr+r'~+?tial equations 823 

and 830 do not change, so that we still have the >;3.91y? r 

dependence near the origin.Since F(C) describes their 

evolution from 0 to r 0, different linear combinations may be 

zero at r. - i.e., we expect equations R28,B35 and B36 to 

change. But this dOrjS IlO t change any of the boundary 

conditions. 
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